skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manzano-King, Christina M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While stellar processes are believed to be the main source of feedback in dwarf galaxies, the accumulating discoveries of active galactic nuclei (AGN) in dwarf galaxies over recent years arouse the interest to also consider AGN feedback in them. Fast, AGN-driven outflows, a major mechanism of AGN feedback, have indeed been discovered in dwarf galaxies and may be powerful enough to provide feedback to their dwarf hosts. In this paper, we search for outflows traced by the blueshifted ultraviolet absorption features in three dwarf galaxies with AGN from the sample examined in our previous ground-based study. We confirm outflows traced by blueshifted absorption features in two objects and tentatively detect an outflow in the third object. In one object where the outflow is clearly detected in multiple species, photoionization modeling suggests that this outflow is located ∼0.5 kpc from the AGN, implying a galactic-scale impact. This outflow is much faster and possesses a higher kinetic energy outflow rate than starburst-driven outflows in sources with similar star formation rates, and is likely energetic enough to provide negative feedback to its host galaxy as predicted by simulations. Much broader (∼4000 km s−1) absorption features are also discovered in this object, which may have the same origin as that of broad absorption lines in quasars. Additionally, strong Heiiλ1640 emission is detected in both objects where the transition falls in the wavelength coverage and is consistent with an AGN origin. In one of these two objects, a blueshifted Heiiλ1640 emission line is clearly detected, likely tracing a highly ionized AGN wind. 
    more » « less
  2. ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $$10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime. 
    more » « less
  3. null (Ed.)